Experimental Comparison of BTD and Intelligent Backtracking: Towards an Automatic Per-instance Algorithm Selector
نویسندگان
چکیده
We consider a generic binary CSP solver parameterized by high-level design choices, i.e., backtracking mechanisms, constraint propagation levels, and variable ordering heuristics. We experimentally compare 24 different configurations of this generic solver on a benchmark of around a thousand instances. This allows us to understand the complementarity of the different search mechanisms, with an emphasis on Backtracking with Tree Decomposition (BTD). Then, we use a per-instance algorithm selector to automatically select a good solver for each new instance to be solved. We introduce a new strategy for selecting the solvers of the portfolio, which aims at maximizing the number of instances for which the portfolio contains a good solver, independently from a time limit.
منابع مشابه
Comparaison de BTD avec des stratégies d ’ exploration “ intelligentes ” pour une sélection automatique d ’ algorithmes
Nous considérons un solveur générique de problèmes de satisfaction de contraintes (CSP) binaires, paramétré par des choix de haut niveau, à savoir le type de recherche, le niveau de propagation de contraintes et l’heuristique de choix de variables. Nous comparons expérimentalement 18 configurations de ce solveur générique sur plus d’un millier d’instances. Un premier but est de comprendre la co...
متن کاملEstimation and Calibration of Robot Link Parameters with Intelligent Techniques
Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...
متن کاملAnytime Hybrid Best-First Search with Tree Decomposition for Weighted CSP
We propose Hybrid Best First Search (HBFS), a search strategy for optimization problems that combines Best First Search (BFS) and Depth First Search (DFS). Like BFS, HBFS provides an anytime global lower bound on the optimum, while also providing anytime upper bounds, like DFS. Hence, it provides feedback on the progress of search and solution quality in the form of an optimality gap. In additi...
متن کاملA Large-Scale Multi-Institutional Evaluation of Advanced Discrimination Algorithms for Buried Threat Detection in Ground Penetrating Radar
In this paper we consider the development of algorithms for the automatic detection of buried threats using ground penetrating radar (GPR) measurements. GPR is one of the most studied and successful modalities for automatic buried threat detection (BTD), and a large variety of BTD algorithms have been proposed for it. Despite this, large-scale comparisons of GPR-based BTD algorithms are rare in...
متن کاملAn Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014